集合

来源:教学辅导发布时间:2012-09-28

一、知识结构

本小节首先从初中代数与几何涉及的实例人手,引出与的元素的概念,并且结合实例对的概念作了说明.然后,介绍了的常用表示方法,包括列举法、描述法,还给出了画图表示的例子.

二、重点难点分析

这一节的重点是的基本概念和表示方法,难点是运用的三种常用表示方法正确表示一些简单的.这一节的特点是概念多、符号多,正确理解概念和准确使用符号是学好本节的关键.为此,在教学时可以配备一些需要辨析概念、判断符号表示正误的题目,以帮助学生提高判断能力,加深理解的概念和表示方法.

1.关于牵头图和引言分析

章头图是一组跳伞队员编成的图案,引言给出了一个实际问题,其目的都是为了引出本章的内容无论是分析还是解决这个实际间题,必须用到和逻辑的知识,也就是把它数学化.一方面提高用数学的意识,一方面说明和简易逻辑知识是高中数学重要的基础.

2.关于的概念分析

点、线、面等概念都是几何中原始的、不加定义的概念,则是论中原始的、不加定义的概念.

初中代数中曾经了解“正数的”、“不等式解的”;初中几何中也知道中垂线是“到两定点距离相等的点的”等等.在开始接触的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集在一起就成为一个,也简称集.”这句话,只是对概念的描述性说明.

我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界.

3.关于自然数集的分析

教科书中给出的常用数集的记法,是新的国家标准,与原教科书不尽相同,应该注意.

新的国家标准定义自然数集N含元素0,这样做一方面是为了推行国际标准化组织(ISO)制定的国际标准,以便早日与之接轨,另一方面,0还是十进位数{0,1,2,…,9}中最小的数,有了0,减法运算 仍属于自然数,其中 .因此要注意几下几点:

    (1)自然数与非负整数是相同的,也就是说自然数集包含0;

    (2)自然数集内排除0的集,表示成 或 ,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示 , , ;

    (3)原教科书或根据原教科书编写的教辅用书中出现的符号如 , , …不再适用.

    4.关于中的元素的三个特性分析

中的每个对象叫做这个的元素.例如“中国的直辖市”这一的元素是:北京、上海、天津、重庆。

中的元素常用小写的拉丁字母 ,…表示.如果a是A的元素,就说a属于A,记作 ;否则,就说a不属于A,记作

    要正确认识中元素的特性:

    (l)确定性: 和 ,二者必居其一.

    中的元素必须是确定的.这就是说,给定一个,任何一个对象是不是这个的元素也就确定了.例如,给出{地球上的四大洋},它的元素是:太平洋、大西洋、印度洋、北冰洋.其他对象都不用于这个.如果说“由接近 的数组成的”,这里“接近 的数”是没有严格标准、比较模糊的概念,它不能构成.

    (2)互异性:若 , ,则

中的元素是互异的.这就是说,中的元素是不能重复的,中相同的元素只能算是一个.例如方程 有两个重根 ,其解集只能记为{1},而不能记为{1,1}.

    (3)无序性:{ab}和{ba}表示同一个.

    中的元素是不分顺序的.和点的坐标是不同的概念,在平面直角坐标系中,点(l,0)和点(0,l)表示不同的两个点,而{1,0}和{0,1}表示同一个.

    5.要辩证理解和元素这两个概念

    (1)和元素是两个不同的概念,符号和是表示元素和之间关系的,不能用来表示之间的关系.例如 的写法就是错误的,而 的写法就是正确的.

    (2)一些对象一旦组成了,那么这个的元素就是这些对象的全体,而非个别现象.例如对于 ,就是指所有不小于0的实数,而不是指“ 可以在不小于0的实数范围内取值”,不是指“ 是不小于0的一个实数或某些实数,”也不是指“ 是不小于0的任一实数值”……

    (3)具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件.

    6.表示的方法所依据的国家标准

本小节列举法与描述法所使用的的记法,依据的是新国家标准如下的规定.

符号

应用

意义或读法

备注及示例

诸元素 构成的集

也可用 ,这里的I表示指标集

使命题 为真的A中诸元素之集

例: ,如果从前后关系来看,集A已很明确,则可使用 来表示,例如

此外, 有时也可写成 或

7.的表示方法分析

有三种表示方法:列举法、描述法、图示法.它们各有优点.用什么方法来表示,要具体问题具体分析.

(l)有的可以分别用三种方法表示.例如“小于 的自然数组成的”就可以表为:

①列举法: ;

②描述法: ;

③图示法:如图1。

(2)有的不宜用列举法表示.例如“由小于 的正实数组成的”就不宜用列举法表示,因为不能将这个中的元素—一列举出来,但这个可以这样表示:

①描述法: ;

②图示法:如图2.

(3)用描述法表示,要特别注意这个中的元素是什么,它应该符合什么条件,从而准确理解的意义.例如:

① 中的元素是 ,它表示函数 中自变量 的取值范围,即 ;

② 中的元素是 ,它表示函数值。的取值范围,即 ;

③ 中的元素是点 ,它表示方程 的解组成的,或者理解为表示曲线 上的点组成的;

④ 中的元素只有一个,就是方程 ,它是用列举法表示的单元素.

实际上,这是四个完全不同的.

列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.要注意,一般无限集,不宜采用列举法,因为不能将无限集中的元素—一列举出来,而没有列举出来的元素往往难以确定.

    8.的分类

含有有限个元素的叫做有限集,如图1所示.

含有无限个元素的叫做无限集,如图2所示.

9.关于空集分析

不含任何元素的叫做空集,记作 .空集是个特殊的,除了它本身的实际意义外,在研究、的运算时,必须予以单独考虑.
教学设计方案

知识目标:

(1)使学生初步理解的概念,知道常用数集的概念及其记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

能力目标:

(1)重视基础知识的教学、基本技能的训练和能力的培养;

(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;

(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力;                           

德育目标:

激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。

教学重点:的基本概念及表示方法

教学难点 :运用的两种常用表示方法——列举法与描述法,正确表示一些简单的

授课类型:新授课

课时安排:2课时

教    具:多媒体、实物投影仪

教学过程 

一、复习引入:

1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.论的创始人——康托尔(德国数学家);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)。

二、讲解新课:  

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)中元素的特性是什么?

(一)的有关概念(例子见书):

1、的概念

(1):某些指定的对象集在一起就形成一个。

(2)元素:中每个对象叫做这个的元素。

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的。记作N

(2)正整数集:非负整数集内排除0的集。记作N*或N+

(3)整数集:全体整数的。记作Z

(4)有理数集:全体有理数的。记作Q

(5)实数集:全体实数的。记作R

注:

(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。记作N*或N+ 、Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

3、元素对于的隶属关系

(1)属于:如果a是A的元素,就说a属于A,记作a∈A;

(2)不属于:如果a不是A的元素,就说a不属于A,记作 .

4、中元素的特性

(1)确定性:

按照明确的判断标准给定一个元素或者在这个里,或者不在,不能模棱两可。

(2)互异性:

中的元素没有重复。

(3)无序性:

中的元素没有一定的顺序(通常用正常的顺序写出)

注:

1、通常用大写的拉丁字母表示,如A、B、C、P、Q……

元素通常用小写的拉丁字母表示,如a、b、c、p、q……

2、“∈”的开口方向,不能把a∈A颠倒过来写。

练习题

1、教材P5练习

2、下列各组对象能确定一个吗?

(1)所有很大的实数。 (不确定)

(2)好心的人。       (不确定)

(3)1,2,2,3,4,5.(有重复)

阅读教材第二部分,问题如下:

1.的表示方法有几种?分别是如何定义的?

2.有限集、无限集、空集的概念是什么?试各举一例。

(二)的表示方法

1、列举法:把中的元素一一列举出来,写在大括号内表示的方法。

例如,由方程 的所有解组成的,可以表示为{-1,1}.

注:(1)有些亦可如下表示:

从51到100的所有整数组成的:{51,52,53,…,100}

所有正奇数组成的:{1,3,5,7,…}

(2)a与{a}不同:a表示一个元素,{a}表示一个,该只有一个元素。

描述法:用确定的条件表示某些对象是否属于这个,并把这个条件写在大括号内表示的方法。

格式:{x∈A| P(x)} 

含义:在A中满足条件P(x)的x的。

例如,不等式 的解集可以表示为: 或

      所有直角三角形的可以表示为:

注:(1)在不致混淆的情况下,可以省去竖线及左边部分。

        如:{直角三角形};{大于104的实数}

(2)错误表示法:{实数集};{全体实数}

3、文氏图:用一条封闭的曲线的内部来表示一个的方法。

注:何时用列举法?何时用描述法?

(1) 有些的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。

如:

(2) 有些的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。

如: ;{1000以内的质数}

注: 与 是同一个吗?

答:不是。

是点集, = 是数集。

(三) 有限集与无限集

1、  有限集:含有有限个元素的。

2、  无限集:含有无限个元素的。

3、  空集:不含任何元素的。记作Φ,如:

练习题:

1、P6练习

2、用描述法表示下列

①{1,4,7,10,13}            

②{-2,-4,-6,-8,-10}          

3、用列举法表示下列

①{x∈N|x是15的约数}            {1,3,5,15}

②{(x,y)|x∈{1,2},y∈{1,2}}  {(1,1),(1,2),(2,1)(2,2)}

注:防止把{(1,2)}写成{1,2}或{x=1,y=2}

③              

④                {-1,1}

⑤   {(0,8)(2,5),(4,2)}

 {(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}

三、小    结:

本节课学习了以下内容:

1.的有关概念:(、元素、属于、不属于、有限集、无限集、空集)

2.的表示方法:(列举法、描述法、文氏图共3种)

3.常用数集的定义及记法

四、课后作业 :教材P7习题1.1

五、板书设计 

课题

一、知识点

(一)

(二)

例题:

1.

2.

六、课后反思:

本节课在教学时主要教会学生学习的表示方法,在认识时,应从两方面入手:

(1)元素是什么?

(2)确定的表示方法是什么?表示时,与采用字母名称无关。

探究活动

【题目】数集A满足条件:若 ,则 ( )

(1)若 ,试求出A中其他所有元素;

(2)自己设计一个数属于A,然后求出A中其他所有元素;

(3)从上面两小题的解答过程中,你能悟出什么道理?并大胆证明你发现的这个“道理”.

【参考答案】

(1)其他所有元素为-1, .

(2)略

(3)A中只能有3个元素,它们分别是 , , 且三个数的乘积为-1.    

    更多精彩文章

    • 函数单调性与奇偶性
    • 第一册函数解析式的求法
    • 一元二次不等式的解法
    • 函数的应用举例
    • 充分条件与必要条件
    手机版 | 电脑版

    Copyright 2015 xuebage.cn