数的整除 分数、小数的基本性质

来源:乐学发布时间:2012-10-06

教学目标 

1.使学生对数的整除的有关概念掌握得更加系统、牢固.

2.进一步弄清各概念之间的联系与区别.

3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.

4.掌握分数、小数的基本性质.

教学重点

通过对主要概念进行整理和复习,深化理解,形成知识网络.

教学难点 

弄清概念间的联系和区别,理解易混淆的概念.

教学步骤 

一、铺垫孕伏.

教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,

在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)

揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.

二、探究新知.

(一)建立知识网络.【演示课件“数的整除”】

1.思考:哪个概念是最基本的概念?并说一说概念的内容.

反馈练习:

在12÷3=4    4÷8=0.5     2÷0.l=20 3.2÷0.8=4中,被除数能除尽除数的有(    )个;被除数能整除除数的有(    )个.

教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?

教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.

2.说出与整除关系最密切的概念,并说一说概念的内容.

反馈练习:下面的说法对不对,为什么?

因为15÷5=3,所以15是倍数,5是约数.     (     )

因为4.6÷2=2.3,所以4.6是2的倍数,2是4.6的约数.   (     )

明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.

3.教师提问:

由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.

根据一个数所含约数的个数的不同,还可以得到什么概念?

互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?

互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.

4.讨论互质数与质数之间有什么区别?

互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.

5.教师提问:

如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?

只有什么数才能做质因数?

什么叫做分解质因数?

只有什么数才能分解质因数?

6.教师提问:

谁还记得,能被2、5、3整除的数各有什么特征?

由一个数能不能被2整除,又可以得到什么概念?

(二)比较方法.

1.练习:求16和24的最大公约数和最小公倍数.

2.思考:求最大公约数和最小公倍数有什么联系和区别?

(三)分数、小数的基本性质.

1.教师提问:

分数的基本性质是什么?

小数的基本性质是什么?

2.练习.

(1)想一想,小数点移动位置,小数大小会发生什么变化?

(2)

(3)下面这组数有什么特点?它们之间有什么规律?

0.108   1.08   10.8   108   1080

三、全课小结.

这节课我们把数的整除的有关知识进行了整理和复习,进一步弄清了各概念之间的

联系和区别,并且强化了对知识的运用.

四、随堂练习.

1.判断下面的说法是不是正确,并说明理由.

(1)一个数的约数都比这个数的倍数小.

(2)1是所有自然数的公约数.

(3)所有的自然数不是质数就是合数.

(4)所有的自然数不是偶数就是奇数.

(5)含有约数2的数一定是偶数.

(6)所有的奇数都是质数,所有的偶数都是合数.

(7)有公约数1的两个数叫做互质数.

2.下面的数哪些含有约数2?哪些是3的倍数?哪些能同时被2、3整除?哪些能同时被2、5整除?哪些能同时被3、5整除?哪些能同时被2、3、5整除?

18   30   45   70   75   84   124   140   420

3.填空.

在1到20中,奇数有(    );偶数有(    );质数有(    );合数有(    );

既是质数又是偶数的数是(    ).

4.按要求写出两个互质的数.

(1)两个数都是质数.

(2)两个数都是合数.

(3)一个数是质数,一个数是合数.

5.说出下面每组数的最大公约数和最小公倍数.

42和14 36和9

13和5 6和11

6.0.75=12÷(    )=(    ) :12=

五、布置作业 .

1.把下面各数分解质因数.

24  45  65  84  102  475

2.求下面每组数的最大公约数和最小公倍数.

36和48 16、32和24 15、30和90

六、板书设计 

数的整除分数、小数的基本性质

    更多精彩文章

    • 分数除法应用题教学反思
    • 第一单元 百分数的应用 9、列方程解稍复杂的百分数实际问题(3)
    • 整数和小数
    • 百分数(四)用百分数解决问题2
    • 第三单元分数除法:分数除法的意义和整数除以分数
    • 百分数(五)折 扣
    • 《分数乘分数》教后反思
    • 第五单元 百分数 教学计划
    • 一个数乘分数教学设计
    • 百分数(七)利息
    • 分数乘、除法应用题的对比
    • “圆柱的体积”教学案例及反思
    • 分数的基本性质
    • 简单应用题
    • “认识体积和容积”教学设计
    手机版 | 电脑版

    Copyright 2015 xuebage.cn