绝对值

来源:教案设计发布时间:2012-12-11


教学目标

1.了解的概念,会求有理数的;

2.会利用比较两个负数的大小;

3.在概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.
教学建议

一、重点、难点分析

概念 既是本节的教学重点又是教学难点。关于的概念,需要明确的是无论是的几何定义,还是的代数定义,都揭示了的一个重要性质——非负性,也就是说,任何一个有理数的都是非负数,即无论a取任意有理数,都有 。

教材上的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及,通过数轴,这些知识都联系在一起了。此外,0的是0,从几何定义出发,就十分容易理解了。

二、知识结构

的定义 的表示方法 用比较有理数的大小

三、教法建议

用语言叙述的定义,用解析式的形式给出的定义,或利用数轴定义,从理论上讲都是可以的.初学用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示的定义,即

教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为的一种直观解释.

此外,要反复提醒学生:一个有理数的不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.

四、有关的一些内容

1.的代数定义

一个正数的是它本身;一个负数的是它的相反数;零的是零.

2.的几何定义

在数轴上表示一个数的点离开原点的距离,叫做这个数的.

3.的主要性质

(2)一个实数的是一个非负数,即|a|≥0,因此,在实数范围内,最小的数是零.

(4)两个相反数的相等.

五、运用比较有理数的大小

1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:较大的负数一定在较小的负数左边,所以,两个负数,大的反而小.

比较两个负数的方法步骤是:

(1)先分别求出两个负数的;

(2)比较这两个的大小;

(3)根据“两个负数,大的反而小”作出正确的判断.

2.两个正数大小的比较,与小学学习的方法一致,大的较大.
  第 1 2 3 4 页  

    更多精彩文章

    • 从生活中选材不要忽视它的数学价值——《绝对值》的教学设计随想
    • 绝对值(一) —— 初中数学第一册教案
    • 绝对值(一)
    • 数学教案-绝对值(一)
    • 数学教案-绝对值
    • 同位角、内错角、同旁内角
    • 数学课优秀课例--正方形和长方形的周长
    • 《长方体的认识》教学思路、教学设计与评析
    • “互为反函数的函数图象间的关系”教学案例
    • 幂的乘方与积的乘方
    手机版 | 电脑版

    Copyright 2015 xuebage.cn