三角形全等的判定2

来源:教案设计发布时间:2012-12-14

课题:全等三角形的判定(二)

教学目标:

1、知识目标:

(1)熟记角边角公理、角角边推论的内容;

(2)能应用角边角公理及其推论证明两个三角形全等.

2、能力目标:

(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;

(2)通过观察几何图形,培养学生的识图能力.

3、情感目标:

(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯 ;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.

教学重点:学会运用角边角公理及其推论证明两个三角形全等.

教学难点:SAS公理、ASA公理和AAS推论的综合运用.

教学用具:直尺、微机

教学方法:探究类比法

教学过程

1、新课引入

投影显示

这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”.于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案 .

2、公理的获得

问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?

让学生粗略地概括出角边角的公理.然后和学生一起做实验,根据三角形全等定义对公理进行验证.

公理:有两角和它们的夹边对应相等的两个三角形全等.

应用格式: (略)

强调:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)

所以找条件归结成两句话:已知中找,图形中看.

(3)、公理与前面公理1的区别与联系.

以上几点可运用类比公理1的模式进行学习.

3、推论的获得

改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?

学生分析讨论,教师巡视,适当参与讨论.

4、公理的应用

(1)讲解例1.学生分析完成,教师注重完成后的总结.

注意区别“对应边和对边”

解:(略)

(2)讲解例2

投影例2 :

学生思考、分析,适当点拨,找学生代表口述证明思路

让学生在练习本上定出证明,一名学生板书.教师强调

证明格式:用大括号写出公理的三个条件,最后写出

结论.



(3)讲解例3(投影)

例3已知:如图4△ABC≌△A1B1C1,AD、A1D1分别是△ABC和△A1B1C1的高.

求证:AD=A1D1

证明:(略)

学生分析思路,写出证明过程.

(投影展示学生的作业 ,教师点评)

(4)讲解例4(投影)

例4 如图5,已知:AC∥BD,EA、EB分别平分∠CAB、∠DBA而交CD于E.

求证:AB=AC+BD

证明:(略)

学生口述过程.投影展示证明过程.

学生思考、分析、讨论,教师巡视,适当参与讨论.

师生共同讨论后,让学生口述证明思路.

教师强调证明线段之间关系的常见方法:截长法或补短法.

5、课堂小结:

(1)判定三角形全等的方法:SAS、ASA、AAS

(2)三种方法的综合运用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.

6、布置作业 

a书面作业 P68#1、2、3

b上交作业 P71B组2

思考题:

如图,已知:AD是A的平分线,AB<AC,

求证:AC-AB>OC-OB

板书设计:

探究活动

要测量河两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D,

使CD=BC,再作BF的垂线DE,使A、C、E在一条直线上,这时测得DE的长就是AB的长,如图,写出已知、求证、并且进行证明.


    更多精彩文章

    • 全等三角形 说课稿(新人教版八年级上)
    • 三角形的中位线 —— 初中数学第三册教案
    • 解直角三角形复习(二) —— 初中数学第三册教案
    • 相似三角形 —— 初中数学第三册教案
    • 第三册相似三角形
    • 第三册解直角三角形复习(二)
    • 第三册三角形的中位线
    • 数学教案-解直角三角形复习(二)
    • 数学教案-三角形的中位线
    • 数学教案-相似三角形
    • 等腰三角形的判定
    • 数学教案-关于三角形的一些概念
    • 数学教案-运用公式法
    • 数学教案-梯形的中位线
    • 二次根式的加减法(第二课时)
    手机版 | 电脑版

    Copyright 2015 xuebage.cn