数学指导:判断充分与必要条件的常用方法

来源:乐学发布时间:2013-09-05

  充分条件与必要条件是高中阶段非常重要的数学概念,它涉及知识范围广,综合性强,能与高中任何知识相结合,有一定的深度与难度,此类题目能有力地考查学生的逻辑思维能力.那么我们如何把握和解决此类问题呢?

  一、 定义法

  对于“?圯”,可以简单的记为箭头所指为必要,箭尾所指为充分.在解答此类题目时,利用定义直接推导,一定要抓住命题的条件和结论的四种关系的定义.

  例1 已知p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有两个小于1的正根,试分析p是q的什么条件?

  分析 条件p确定了m,n的范围,结论q则明确了方程的根的特点,且m,n作为系数,因此理应联想到根与系数的关系,然后再进一步化简.

  解 设x1,x2是方程x2+mx+n=0的两个小于1的正根,即0<x1<1,0<x2<1,则0<x1+x2<2,0<x1?x2<1,依韦达定理,则有0<-m<2,0<n<1,从而q?圯p.

  而对于满足条件p的m=-1,n=,方程x2-x+=0并无实根,所以pq.

  综上,可知p是q的必要但不充分条件.

  点评 解决条件判断问题时,务必分清谁是条件,谁是结论,然后既要尝试由条件能否推出结论,也要尝试由结论能否推出条件,这样才能明确做出充分性与必要性的判断.

  二、 集合法

  如果将命题p,q分别看作两个集合A与B,用集合意识解释条件,则有:①若A?哿B,则x∈A是x∈B的充分条件,x∈B是x∈A的必要条件;②若A?芴B,则x∈A是x∈B的充分不必要条件,x∈B是x∈A的必要不充分条件;③若A=B,则x∈A和x∈B互为充要条件;④若A?芫B且A?芸B,则x∈A和x∈B互为既不充分也不必要条件.

  例2 设x,y∈R,则x2+y2<2是|x|+|y|≤的()条件,是|x|+|y|<2的()条件.

  A. 充要条件 B. 既非充分也非必要条件

  C. 必要不充分条件?摇D. 充分不必要条件

  解 如右图所示,平面区域P={(x,y)|x2+y2<2}表示圆内部分(不含边界);平面区域Q={(x,y)||x|+|y|≤}表示小正方形内部分(含边界);平面区域M={(x,y)||x|+|y|<2}表示大正方形内部分(不含边界).

  由于(,0)?埸P,但(,0)∈Q,则P?芸Q.又P?芫Q,于是x2+y2<2是|x|+|y|≤的既非充分也非必要条件,故选B.

  同理P?芴M,于是x2+y2<2是|x|+|y|<2的充分不必要条件,故选D.

  点评 由数想形,以形辅数,这种解法正是数形结合思想在解题中的有力体现.数形结合不仅能够拓宽我们的解题思路,而且也能够提高我们的解题能力.

  三、 逆否法

  利用互为逆否命题的等价关系,应用“正难则反”的数学思想,将判断“p?圯q”转化为判断“非q?圯非p”的真假.

  例3 (1)判断p:x≠3且y≠2是q:x+y≠5的什么条件;

  (2) 判断p:x≠3或y≠2是q:x+y≠5的什么条件.

  解 (1)原命题等价于判断非q:x+y=5是非p:x=3或y=2的什么条件.

  显然非p非q,非q非p,故p是q的既不充分也不必要条件.

  (2) 原命题等价于判断非q:x+y=5是非p:x=3且y=2的什么条件.

  因为非p?圯非q,但非q非p,故p是q的必要不充分条件.

  点评 当命题含有否定词时,可考虑通过逆否命题等价转化判断.

  四、 筛选法

  用特殊值、举反例进行验证,做出判断,从而简化解题过程.这种方法尤其适合于解选择题.

  例4 方程ax2+2x+1=0至少有一个负实根的充要条件是()

  A. 0<a≤1 B. a<1 C. a≤1 D. 0<a≤1

更多精彩文章

  • 2008高考数学指导:考前的准备与考场效益
  • 高一数学指导:学习数学=学习解题?
  • 高三数学指导:掌握常规数学思维模式(嘉?
  • 高三数学指导:学习技巧加素质培养
  • 高考数学复习:数学高考冲刺复习要点谈
  • 数学指导:判断充分与必要条件的常用方法
  • 高考数学复习:高考数学题中的惊人发现!
  • 高考复习:6个妙招帮助女生有效提高数学成绩
  • 高一数学经验速递:你必须反省的几个问题
手机版 | 电脑版

Copyright 2015 xuebage.cn