有句话叫解立体几何,得辅助线者得天下

来源:未知发布时间:2017-06-24

有句话叫解立体几何,得辅助线者得天下

很多参加过高考数学的人说,解决立体几何问题,关键在于添加辅助线,甚至一些人认为“解立体几何,得辅助线者得天下”。这样的话或许有些夸张,但也表明解决立体几何问题关键在于要学会添加辅助线。

事实上,如何添加辅助线一直是很多学生学习几何难点和痛点,一些同学由于没有掌握好添加辅助线的基本方法,给解题带来很大的困扰。在添加辅助线过程中,很多同学都是片面凭解题感觉、盲目乱添,不仅没能帮助解决问题,甚至给解题带来错误的引导。

其实掌握立体几何添加辅助线的方法,大家可以牢记这么一段口诀:“有了中点配中点,两点相连中位线;等腰三角形出现,顶底中点相连线;有了垂面作垂线,水到渠成理当然。”

今天我们就结合一些实际例题,来讲讲如何解决立体几何问题。

典型例题1:

有句话叫解立体几何,得辅助线者得天下

有句话叫解立体几何,得辅助线者得天下

有句话叫解立体几何,得辅助线者得天下

解决有关线面平行、面面平行的基本问题要注意:

1、判定定理与性质定理中易忽视的条件,如线面平行的判定定理中条件线在面外易忽视.

2、结合题意构造或绘制图形,结合图形作出判断.

3、举反例否定结论或用反证法推断命题是否正确.

在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在性质定理的应用中,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.

辅助线(面)是求证平行问题的关键,注意平面几何中位线,平行四边形及相似中有关平行性质的应用.

典型例题2:

有句话叫解立体几何,得辅助线者得天下

有句话叫解立体几何,得辅助线者得天下

有句话叫解立体几何,得辅助线者得天下

判定面面垂直的方法:

1、面面垂直的定义。

2、面面垂直的判定定理(a⊥β,a?α?α⊥β).

在已知平面垂直时,一般要用性质定理进行转化,转化为线面垂直或线线垂直.

转化方法:在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.

在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决,如有平面垂直时,一般要用性质定理.

几个常用的结论:

1、过空间任一点有且只有一条直线与已知平面垂直.

2、过空间任一点有且只有一个平面与已知直线垂直.

解决此类问题常用的方法有:①依据定理条件才能得出结论的,可结合符合题意的图形作出判断;②否定命题时只需举一个反例;③寻找恰当的特殊模型(如构造长方体)进行筛选。

求异面直线所成的角一般用平移法,步骤如下:

1、一作:即找或作平行线,作出异面直线所成的角;

2、二证:即证明作出的角是异面直线所成的角;

3、三求:解三角形,求出所作的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角。

    更多精彩文章

    • 立体几何判定性质i定理
    • 原创分析10:只做精品!正余弦定理PK勾股定理!你猜谁赢?
    • 2017年高考64天倒计时——二项式定理题型总结及解题方法
    • 几道“立体几何”解答题
    • 立体几何中的轨迹问题
    • 用补形法解立体几何题
    • 立体几何中的空间向量方法ooo二面角及异面直线的距离
    • 需要 | 空间向量解立体几何,如此简单!
    • 各种圆定理总结(包括托勒密定理、塞瓦定理、西姆松定理)
    • 高考立体几何解题技巧
    • 重新梳理思路 把握应考技巧
    • 文科怎么学 浅谈高中文科学习体会
    • 中国古代文化史部分学习方法和复习策略
    • 方法点拨:写好作文开头的经典九法
    • 以不变应万变,以变应变
    手机版 | 电脑版

    Copyright 2015 xuebage.cn