高考数学 | 72个考试易犯的低级错误,千万要注意!(文/理)

来源:高考数学发布时间:2019-05-09

1.集合中元素的特征认识不明。

元素具有确定性,无序性,互异性三种性质。

 

2.遗忘空集。

A含于B时求集合A,容易遗漏A可以为空集的情况。比如A为(x-1)的平方>0,x=1时A为空集,也属于B.求子集或真子集个数时容易漏掉空集。

 

3.忽视集合中元素的互异性。

 

4.充分必要条件颠倒致误。

必要不充分和充分不必要的区别,比如:p可以推出q,而q推不出p,就是充分不必要条件,p不可以推出q,而q却可以推出p,就是必要不充分。

 

5.对含有量词的命题否定不当。

含有量词的命题的否定,先否定量词,再否定结论。

 

6.求函数定义域忽视细节致误。

根号内的值必须不能等于0,对数的真数大于等于零,等等。

 

7.函数单调性的判断错误。

这个就得注意函数的符号,比如f(-x)的单调性与原函数相反。

 

8.函数奇偶性判定中常见的两种错误,判定主要注意:

1)定义域必须关于原点对称

2)注意奇偶函数的判断定理,化简要小心负号。

 

9.求解函数值域时忽视自变量的取值范围。

总之有关函数的题,不管是要你求什么,第一步先看定义域,这个是关键。

 

10.抽象函数中推理不严谨致误。

 

11.不能实现二次函数,一元二次方程和一元二次不等式的相互转换。

二次函数令y为0→方程→看题目要求是什么→要么方程大于小于0,要么刁塔(那个小三角形)b的平方-4ac大于等于小于0种种。

 

12.比较大小时,对指数函数,对数函数,和幂函数的性质记忆模糊导致失误。

 

13.忽略对数函数单调性的限制条件导致失误。

 

14.函数零点定理使用不当致误。

f(a)xf(b)<0,则区间ab上存在零点。

 

15.忽略幂函数的定义域而致错。

x的二分之一次方定义域为0到正无穷。

 

16.错误理解导数的定义致误。

 

17.导数与极值关系不清致误。

f‘派x为0解出的根不一定是极值这个要注意。

 

18.导数与单调性关系不清致误。

 

19.误把定点作为切点致误。

注意题目给的是过点p的切线还是在点p的切线,再不行就把点代进去f(x)看点p是不是切点。

 

20.忽略幂函数的定义域而致错。

x的二分之一次方定义域为0到正无穷。

 

21.错误理解导数的定义致误。

 

22.导数与极值关系不清致误。

f‘派x为0解出的根不一定是极值这个要注意。

导数与单调性关系不清致误。

 

23.误把定点作为切点致误。

注意题目给的是过点p的切线还是在点p的切线,再不行就把点代进去f(x)看点p是不是切点。

 

24.计算定积分忽视细节致误。

 

25.忽视角的范围。

 

26.图像变换方向把握不准。

 

27.忽视正。余弦函数的有界性。

 

28.解三角形时出现漏解或增解。

 

29.向量加减法的几何意义不明致误。

 

30.忽视平面向量基本定理的使用条件致误。

 

31.向量的模与数量积的关系不清致误。

 

32.判别不清向量的夹角。

 

33.忽略an=sn—sn—1的成立条件。

 

34.等比数列求和时,忽略对q是否为1的讨论。

 

35.数列项数不清导致错误。

 

36.考虑问题不全面而导致失误。

 

37.用错位相减法求和时处理不当。

 

38.忽视变形转化的等价性。

 

39.忽视基本不等式应用条件。

 

40.不等式解集的表述形式错误。

 

41.恒成立问题错误。

 

42.目标函数理解错误。

 

43.由三视图还原空间几何体不准确致误。

 

44.空间点,线,面位置关系不清致误。

 

45.证明过程不严谨致误。

 

46.忽视了数量积和向量夹角的关系而致误。

 

47.忽视异面直线所成角的范围而致错。

 

48.用向量法求线面角时理解有误而致错。

 

弄错向量夹角与二面角的关系致误。

 

49.解折叠问题时没有理顺折叠前后图形中的不变量和改变量致误。

 

50.忽视斜率不存在的情况。

 

51.忽视圆存在的条件。

 

52.忽视零截距致误。

 

53.弦长公式使用不合理导致解题错误。

 

54.焦点位置不确定导致漏解。

 

55.忽视限制条件求错轨迹方程。

 

56.解决直线与圆锥曲线的相交问题时忽视大于零的情况。

 

57.两个原理不清而致错。

 

58.排列组合问题错位或出现重复,遗漏致误。

 

59.忽视特殊数字或特殊位置而致错。

 

60.混淆均匀分组与不均匀分组致错。

 

61.不相邻问题方法不当而致错。

 

62.混淆二项式系数与项的系数而致误。

 

63.混淆频率与频率/组距致误。

 

64.分布列的性质把握不准致错。

 

65.混淆独立事件与互斥事件而致错。

 

66.求分布列错误而致均值或方差错误。

 

67.正态分布中概率计算错误。

 

68.忽视类比的对应关系致误。

 

69.反证法中假设不准确导致证明错误。

 

70.程序框图中执行次数判断错误。

 

71.对复数的概念认识不清致误。

 

72.归纳假设使用不当致误。

    更多精彩文章

    • 高考数学答题方法的19条铁律,能帮你大大的节省时间
    • 高考数学干货丨最容易出错的十道函数经典例题,快来巩固一下吧!
    • 条条干货!决定你高考数学成绩的31条真理!早看不吃亏!
    • 高考数学碰到实在不会的题,这样蒙,正确率最高!
    • 高考数学答题技巧+高频考点!想提分的同学快看!
    • 高考数学答题技巧+高频考点!2019高考生必看!
    • 2019高考数学大题的最佳解题技巧及解题思路
    • 高考数学选择题最不择手段的解题技巧,60分妥妥的!
    • 高考数学:数列万能解法全归纳。。。
    • 高中数学必背公式总结 2019高考数学必背重点公式大全
    • 高考复习:6个妙招帮助女生有效提高数学成绩
    • 高考数学复习:数学高考冲刺复习要点谈
    • 高考数学复习:高考数学题中的惊人发现!
    • 高一数学经验速递:你必须反省的几个问题
    • 数学指导:判断充分与必要条件的常用方法
    手机版 | 电脑版

    Copyright 2015 xuebage.cn