二次函数复习课案例及反思
来源:教案辅导发布时间:2013-06-09
因为对称轴是x=2,所以-b/2a=2
所以得 a+b+c=0 c=3
-b/2a=2
解得 a=1 b=-4 c=3
所以所求 解析式为y=-4x+3师: 两点代入二次函数一般式必定出现不定式,能想到对称轴,从而以三元一次方程组解得a,b,c,不错!除此方法外,还有没有其他方法,大家可以相互讨论一下. (同学们开始讨论,思考)
生B: 我认为此题可用顶点式,即设二次函数解析式为
y=a(x-2)2+k,把(1,0),(0,3) 代入,得
a+k=0 4a+k=3
解得 a=1 k=-1
故所求二次函数的解析式为y= (x-2)2 -1,
即y=x2-4x+3
师: 非常好.那还有没有其他方法,请大家再思考一下.(学生沉默一会儿,有人举手发言)
生C: 因为对称轴是直线x=2,在y轴上的截距为3,我认为该二次函数解析式可设为y=ax2-4ax+3,在把(1,0)代入得a-4a+3=0,解得a=1,所以,求解析式为y= -4x+3
师: 设得巧妙,这个函数解析式只含一个字母,这给运算带来很大方便,很好,很善于思考.大家再想想看,是否还有其他解题途径.
(学生们又挖空心思地思考起来,终于有一学生打破沉寂)
生D: 由于图象过点(1,0), 对称轴是直线x=2,故得与x轴的另一交点为(3,0),所以可用两根式设二次函数解析式为y=a(x-1)(x-3), 再把(0,3)代入, 得a=1,
所以二次函数解析式为y= (x-1)(x-3) ,即y=x2-4x+3
师: 函数本身与图形是不可分割的,能数形结合,非常不错,用两根式解此题,非常独到.(至此下课时间快到,原先设计好的三题只完成一题,但看到学生的探索的可爱劲,不能按课前安排完成内容又有何妨呢?)
师: 最后,请同学们想一下,通过本堂课的学习,你获得了什么?
生1:我知道了求二次函数解析式方法有: 一般式,顶点式,两根式.
生2:我获得了解题的能力,今后做完一道题目,我会思考还有没有更好的方法.
二、回顾与反思
所以得 a+b+c=0 c=3
-b/2a=2
解得 a=1 b=-4 c=3
所以所求 解析式为y=-4x+3师: 两点代入二次函数一般式必定出现不定式,能想到对称轴,从而以三元一次方程组解得a,b,c,不错!除此方法外,还有没有其他方法,大家可以相互讨论一下. (同学们开始讨论,思考)
生B: 我认为此题可用顶点式,即设二次函数解析式为
y=a(x-2)2+k,把(1,0),(0,3) 代入,得
a+k=0 4a+k=3
解得 a=1 k=-1
故所求二次函数的解析式为y= (x-2)2 -1,
即y=x2-4x+3
师: 非常好.那还有没有其他方法,请大家再思考一下.(学生沉默一会儿,有人举手发言)
生C: 因为对称轴是直线x=2,在y轴上的截距为3,我认为该二次函数解析式可设为y=ax2-4ax+3,在把(1,0)代入得a-4a+3=0,解得a=1,所以,求解析式为y= -4x+3
师: 设得巧妙,这个函数解析式只含一个字母,这给运算带来很大方便,很好,很善于思考.大家再想想看,是否还有其他解题途径.
(学生们又挖空心思地思考起来,终于有一学生打破沉寂)
生D: 由于图象过点(1,0), 对称轴是直线x=2,故得与x轴的另一交点为(3,0),所以可用两根式设二次函数解析式为y=a(x-1)(x-3), 再把(0,3)代入, 得a=1,
所以二次函数解析式为y= (x-1)(x-3) ,即y=x2-4x+3
师: 函数本身与图形是不可分割的,能数形结合,非常不错,用两根式解此题,非常独到.(至此下课时间快到,原先设计好的三题只完成一题,但看到学生的探索的可爱劲,不能按课前安排完成内容又有何妨呢?)
师: 最后,请同学们想一下,通过本堂课的学习,你获得了什么?
生1:我知道了求二次函数解析式方法有: 一般式,顶点式,两根式.
生2:我获得了解题的能力,今后做完一道题目,我会思考还有没有更好的方法.
二、回顾与反思